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CONCURRENT PROCESSING OF COMPLEX ALGORITHMS

By
John W. Stoughton! and Roland R. Mielke?

CHAPTER 1
1.0 INTRODUCTION

This report presents the results of ongoing research directed at devel-
oping a graph theoretic model for describing data and control flow associ-
ated with the execution of large grained algorithms in a special distributed
computer environment. This model is identified by the acronym ATAMM which
represents Algorithm/Architecture Mapping Model. The purpose of such a
model is to provide a basis for establishing rules for relating an algorithm
to its execution in a multiprocessor environment. Symbolically this problem
is illustrated in Figure 1.1

Specifications derived from the model lead directly to the description
of a data flow architecture which is a consequence of the inherent behavior
of the data and control flow described by the model. The purpose of the
ATAMM based architecture is to optimize computational concurrency in the
multiprocessor environment and to provide an analytical basis for perfor-
mance evaluation. The ATAMM model and architecture specifications are dem-
onstrated on a prototype system for concept validation.

The problem domain of the research reported herein consists of decision
free algorithms with computationally complex primitive operations which are

assumed to be implemented in a dedicated distributed multicomputer environ-

ment. The algorithms are such as may be found in (but not limited to) large
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scale signal processing and control applications. The anticipated multipro-
cessor environment is assumed to consist of 2 to 20 processing elements for
concurrent execution of the various algorithm primitives. Further, Very
High Speed Integrated Circuit (VHSIC) technology incorporating the MIL-STD
1750A instruction set is the intended technology for the support of the
multiprocessor environment.

From the given problem domain, the research products are the result of
understanding two major areas. These areas are non Von Neumann multiproces-
sor architectures and Petri-net and marked graph theory which provides the
theoretical basis for the ATAMM model.

Chapter 2 presents the ATAMM model development. From the model des-
cription, general specifications of a data flow architecture are generated.
Chapter 3 presents an introductory discussion of performance measures. In
Chapter 4, a data flow prototype of a multiprocessor architecture design
based on the ATAMM specifications is described. Implementation of this
prototype provides experimental verification of the ATAMM Model rules.
Chapter 5 presents preliminary evaluation results from the data flow

prototype.



CHAPTER 2
2.0 ATAMM MODEL DEVELOPMENT

2.1 Introduction

New computer architectures based upon multiple processor organizations
for computation are motivated mainly by the desire to increase computer
performance through the use of concurrency for computationally intensive
applications. The development of parallel architectures composed of
identical, special purpose computing elements is already a topic of great
interest to many researchers. However, models for describing the behavior
of algorithms in this setting do not appear to be adequate to address the
complex issues of scheduling, coordination, and communication.

In this chapter, a modeling process to describe concurrent processing
of decomposed algorithms is presented. The resulting model (ATAMM) consists
of a Petri net marked graph which incorporates general specifications of
comnunication and processing associated with each computational event in a
multiprocessor data flow architecture. The availability of such a modeling

process is important for two reasons. First, the model provides a hardware-
independent context in which to investigate the relative merits of different

algorithm decomposition and implementation strategies. Second, the model
clearly displays the data flow and control flow which must be manifested by
any data flow computer architecture implementing the decomposed algorithm.
Thus the ATAMM Model provides the foundation for the development of design
procedures for concurrent processing of complex algorithms.

In Section 2.2, a description of the class of problems under considera-

tion is given. The directed graph representation of particular decomposed



algorithms is described in Section 2.3. After a brief introduction to

Petri-net and marked graphs in Section 2.5. The basic assumptions concern-
ing the architectural enviroment are presented in Section 2.6. The develop-
ment of the computational marked graph model in Section 2.7 completes the

ATAMM model in Section 2.7 completes the ATAMM model development.

2.2 _Problem Description

The computational problems of interest are decision-free computation-
ally complex problems as are often found in signal processing and control
applications. A problem description normally results in the definition of a
function given by the triple (X,Y,F). The set X represents the set of ad-
missible inputs, Y represents the set of admissible outputs, and F:X + Y is
the rule of correspondence which unambiguously assigns exactly one element
from T to each element of Q. This functional problem statement is illus-
trated in Figure 2.1. Associated with a computational problem is an algo-
rithm. An algorithm is composed of a sequentially order set of primitive
operations and operands which represent the particular rule of correspon-
dence F:X » Y.

A given problem often decomposes into a number of different algorithms.
In general, a given algorithm can be decomposed by several different primi-
tive operator sets. Also, for a given primitive operator set, there are
often different sequences of primitive operations which can be scheduled to
carry out-the algorithm. For illustration, consider the following problem.
Suppose that @ = T is the set of (nxn) matrices with elements in R (set of
real numbers.) Given a matrix x e Q, it is desired to compute a matrix
ye Y given by y = f(x) = x2 + ax + b where a and b are specified (nxn)

matrices with elements in R. This algorithm can be decomposed in the two
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Figure 2.1 Functional correspondence.



sets of primitive operators stated below.

Primitive Operator Set One:
fi(Psq) = p+ a5 f,(p,q) = p * q.

and

Primitive Operator Set Two

f3(p,q,r) =(p-aq)+r.

Using primitive operator set one, the algorithm is represented by two

different operator sequences:
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or
y=f(x) = {[x+ (x+ a)]+ b}

= f,{f,[x,f (x,a), b}.
Another decomposition is expressed using primitive operative set two:

y=f(x) = {xe+ [(1x)+a]+0b}
X, f3[1,a,x], b} .

f3{

where the notation 1 is used to represent the (nxn) identity matrix.



2.3 Algorithm Directed Graph

An algorithm directed graph (ADG) is a directed graph which represents
a specific algorithm decomposition. The graph provides a description of the
operand data flow and operation sequence required by the algorithm
decomposition. Vertices of the ADG are in a one-to-one correspondence with
each occurence of a primitive operation. The algorithm graph contains an
edge (i,j) directed from vertex i to vertex j if the output of primitive
operation i is an input operand for primitive operation j. When
constructing an algorithm graph, vertices (primitive operations) are
displayed as circles, and edges (input-output signals) are displayed as
directed line segments connecting appropriate vertices. Sources and sinks
for input and output signals are represented as squares. Sources from
constants are not usually included in the algorithm graph; however,
triangles are used for this purpose when necessary.

To i]]ustrate.the constructijon of an algorithm directed graph, consider
the problem of computing the output of a discrete linear system given a
sequence of inputs to the system. Let the system be described by the

partitioned state equation

xl(k+1) = A11 A12 Xl(k) + | B, |u{k+l)

xz(k+1) A

and



where x1 is a p-vector, x2

tor, p+ q = n, and Aij and Bk are constant submatrices. The primitive

is a g-vector, u is an m-vector, y is an r-vec-

operations are defined as matrix multiplication and vector addition, and the
natural algorithm decomposition resulting from the state equation descrip-
tion is selected. The algorithm directed graph for this decomposed algo-
rithm is shown in Fig. 2.2. Note that each edge is labled with the corre-
sponding data and the nodes are labled to indicate the associated computa-

tional operation.

2.4 Petri Nets and Marked Graphs

Petri nets have been established as an appropriate models for describ-
ing or controlling systems defined by some sequence of events. Without
argument, the algorithm directed graph satisfies this general aspect. Fur-
ther, since computers need to communicate and be controlled on the occurence
of certain events, the Petri net becomes a suitable tool to form the basis
of the ATAMM model. Certain physical characteristics of the class of prob-
lems under consideration lead to a simplified Petri net representation.

(For a formal description of Petri net features, the reader is referred to
Appendix A.)

Considering the data flow in an algorithm directed graph, the execution
of a primitive operation is preconditioned on the availability of input
signals (or operands). This process may be directly modeled by a Petri-net
"transition" which is "enabled" for "firing" when input "places" to the
transition are marked with "tokens". Because the signal or data availabil-
ity is a binary condition, it is appropriate that the tokens are limited to
the set (0,1) in order to associate places (conditions) to transactions

(events) in a binary way. A Petri net having such restricted input and



AULS

‘uoiienba s1e3s pasodwodsp-ydeab padradLp wyataobly z-z aunbyq

XIID Wz W
1012873 A

A+ A

WxA l
Cly
3 WA
WxA
€ S i
+A
A Nm
Zhy n 821nog
WxA(6 8
WxA v
n
A v oL
A+ A l
WxAdg WxkA O
9
by

Wx A

10



output functions is called an ordinary Petri net. Figure 2.3 illustrates
the ordinary Petri net features. The interpretation of places in the system
model developed here is the availability of a signal. That is, the absence
of a token indicates the absence of a data signal, and the presence of a
token indicates the availability of a data sigal. Petri nets having such
restricted markings are called safe or one-bounded Petri nets. Finally, the
assumption is made that the algorithms under consideration contain no con-
flict or decision making such as "if then else" or "do while" statements,
thus Timiting the Petri net places to having one input transition and one
output transition. This class of restricted Petri nets is called marked
graphs. Therefore, the Petri nets used in this report are ordinary, safe
marked graphs.

The decision to initially consider decision-free algorithms is made
because the resulting marked graph models are better understood than general
Petri nets. Well known properties of marked graphs hold the potential for
the development of performance bounds for concurrent processing strategies.
An interesting extension of this work is to admit algorithms which include

conditional branching.

2.5 Algorithm Marked Graph

An algorithm marked graph (AMG) is a marked graph which represents a
specific algorithm decomposition and is identical in topology to the
corresponding algorithm directed graph. The AMG represents the first
application of the Petri net structure to the development of the ATAMM
model. The construction rules and symbols are the same as the ADG except
that the edges are marked with tokens to represent the availability of data.
That is, edge (i,j) is marked with a token if an output from primitive

operator is is available as an input to primitive operator j. The presence

11
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of a token on an edge is indicated by a solid dot placed on the edge. The
vertices correspond to transitions which may fire after being enabled by the
availability of all input data tokens.

The decomposed state equation represented in Fig. 2.2 is used to
illustrate the AMG. The example AMG is shown in Fig. 2.4. It should be
noted that the initial conditions for the recursion are represented by
tokens on the loop edges.

The algorithm marked graph is a useful tool for representing decomposed
algorithms and for displaying data flow within an algorithm. However, the
AMG does not display procedures that a computing structure must manifest in
order to perform the computing task. In addition, the issues of control,

time performance, and resource management are not apparent in this graph.

2.6 Computational Environment

The computational environment for the ATAMM model is assumed to be a
multiprocessor data-flow computer architecture. The data flow aspect is
motivated by the algorithm directed graph which defines the data flow
required to execute the algorithm.

The architecture is assumed to consist of R identical processors or
functional units (FUNs) where R has a value in the range of two to twenty.
This upper bound is suggested for practical reasons due to the large grained
aspect of the algorithm decomposition and the need to maintain communication
times small relative to process times. Therefore, little or no contention
for access to communication paths occurs between functional units.

Each FUN is a processor having local memory for program storage and
temporary input and output data containers. Each FUN has the capability to

execute any algorithm primitive operation. The FUNs share a common global

13
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memory (GLM) which may be either centralized or distributed. The
coordination of FUNs in relation to data and control flow is directed by the
graph manager (GRM). The GRM itself may be centralized or distributed.

Qutput created by the completion of a primitive operation is placed
into global memory only after the output data containers have been emptied.
That is, outputs must be consumed as inputs to successor primitive
operations before allowing new data to fill the output locations.

Assignment of a functional unit to a specific algorithm primitive
operation is made by the GRM only when all inputs required by the operation
are available in global memory and a functional unit is available. A
feature that will be developed Tater is that assignment of funcitonal units
to primitive operations is performed continuously during run-time execution
of the algorithm. This contrasts with static resource assignment procedures
in which primitive operations are assigned to specific functional units
during program development, and with dynamic resource assignment procedures
in which primitive operations are assigned to specific funcitonal units
during program compilation. One of many possible computer architectures
consistent with these assumptions is shown in Fig. 2.5. Specific features

of an experimental prototype architecture are described in Chapter 4.

2.6 Node Marked Graph

Algorithm requirements and the computing environment may now be
integrated into a comprehensive Petri net model to complete the ATAMM model.
The model consists of a Petri net marked graph called the computational
marked graph (CMG). The CMG displays the data flow and control flow

required to implement a decomposed algorithm in a multiprocessor data flow

15
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computer architecture. Before defining this model, it is helpful to define

an intermediate graph called the node marked graph (NMG).

A node marked graph is a Petri net representation of the computing behavior
of a primitive operation by a functional unit. Three primary activities,
reading of input data from global memory, processing of input data to
compute an output, and writing of output data to global memory, are
represented as transitions (vertices) in the NMG. Data and control flow
paths are represented as places (edges), and the presence of signals is
notated by tokens marking appropriate edges. The conditions for firing the
process and write transitions of the NMG are as defined for a general Petri
net, while the read transiiton has one additional condition for firing. In
addition to having a token present on each incoming signal edge, a
functional unit must be available for assignment to the primitive operation
before the read node can fire. Once assigned, the functional unit is used
to implement the read, process, and write operations before being returned
to a queue of available FUNs.

Two different node marked graphs are defined to represent two different
strategies. The first mode, called the three node model, requires that
control signals indicating that empty data containers are available to
receive new output are input edges to the write transition. Therefore,
initiation of the primitive operation depends only on availablity of input
data and availability of a functional unit. This strategy allows a
primitive operation to commence without first having an output container
available in global memory. This model is shown in Fig. 2.6. The second
model, called the one node model, requires control signals indicating tnat
empty data containers are available to recieve new output as input edges to
the read transiton. Therefore, initiation of the primitive operation

requires not only the availability of input data and a functional unit, but

17



also the availability of empty output data containers in global memory.

This model is shown in Fig. 2.7. It is noted that the three node model is
used in for most of the examples of this report. However, it has been
recently observed that the one node model has the inherent property of
maintaining deadlock free CMG graphs. Thus, it is anticipated that the one
node NMG will become prominent in future development and application of the

ATAMM model.

2.7 Computational Marked Graph

A computational marked graph (CMG) is constructed from an algorithm

marked graph according to the following rules.

1. Source and sink nodes in the algorithm graph are represented by
source and sink nodes in the CMG.

2. Nodes corresponding to primitive operations in the algorithm graph
are represented by NMGs in the CMG.

3. Edges in the algorithm graph are represented by edge pairs, one
forward directed for data flow and one backward directed for
control flow, in the CMG.

The play of the CMG proceeds according to the following graph rules.

1) A node is enabled when all incoming edges are marked with a token.
An enabled node fires by encumbering one token from each incoming
edge, delaying for some specified transition time, and then
depositing one token on each outgoing edge.

2) A source node and a sink node fire when enabled without regard for
the availability of a FUN.

3) A primitive operation is initiated when the read node of an NMG is
enabled and a FUN is available for assignment to the NMG and thus

fires the read node. A FUN remains assigned to an NMG until

18



Figure 2. 6 Node marked grapn 3-node model.

Figure 2.7 Node marked graph one-node model.
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completion of the firing of the write node of the NMG. Supervision
of this logical assugnment of the fun is managed by the GRM.

In order to illustrate the construction of a computational marked
graph, the CMG corresponding to the algorithm graph of Fig. 2.2 is shown in
Fig. 2.8. The three node NMG is used in this CMG for convenience of
presentation. The compUtational marked graph is important because it
clearly displays the data and control flow which must occur in any hardware
implementation of the model process, and because it provides a hardware
independent context in which to evaluate process performance. Thus, the CMG
becomes the theoretical vehicle for presenting the ATAMM model.

The ATAMM model consists of all the modeling steps which lead to the
integration of the algorithm data flow with the data flow architecture. A

pictorial description of the ATAMM model is shown in Fig. 2.9.

21
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CHAPTER 3

3.0 GRAPH MODEL OPERATING CHARACTERISTICS

3.1 Introduction

An important component of the ATAMM model, as previously described, is
the CMG algorithm/architecture behavioral model. This model is important
because it provides a hardware independent context in which to investigate
the relative merits of different algorithm decompositions and different
implementation strategies. In this chapter, properties of the CMG Petri net
model are studied analytically to determine graph operating characteristics
and to develop bounds on computational performance. Many of the properties
presented here result from restricting the algorithms under consideration to
be decision-free so that the graph models are marked graphs. An important
extension of this work is to conduct a similar study admitting algorithms
containing decision points (branching).

In Section 3.2, a state variable description is developed for the com-
putational marked graph (CMG). This formulation expresses the next graph
marking as a function of the present marking and a vector which indicates

which transition is to be fired. Graph operating characteristics are de-

veloped analytically in Section 3.3. Among the properties considered are
reachability, liveness and safeness. Then, in Section 3.4, performance
bounds are investigated. Upper and lower bounds for computational time are

established.

3.2 State Equation Description

In this section, a state equation formulation for computing the marking
vector of a marked graph is presented. This development is easily extended

to general Petri nets. Let G be a marked graph consisting of m places and n

23



transitions. The m-vector Mk is the marking vector for G resulting from the
firing of some sequence of k transitions. The following two definitions are
necessary for the state equation formulation.

Complete incidence Matrix. The complete incidence matrix for a marked graph
G is the (nxm) matrix A = [aij] having rows corresponding to transitions and

columns corresponding to places, and where
-

+1(-1) if place j is incident at transition i and
directed out of (into) the transition
457 <
§ 0 if place j is not indicent at transition i.

Elementary Firing Vector. An elementary firing vector Uy is an n-vector
having all zero entries except for the ith component which is 1 denoting
that transition i is the kth transition to fire in some transition firing
sequence.

To gain insight to the state equation formulation, it is helpful to
consider the firing of transition k. If aki = -1, place i is an input to
transition k. Therefore, transition k is enabled if M(i) = 1 for each place

i for which ay = -1. When transition k fires, one token is removed from

each place i for which akﬁ = -1, and one token is added to each place j for

which akj = +]1. These observations lead to the following state equation
description for the marking vector of a marked graph.

State Equation Description. For a marked graph G with present marking Mk-l

and elementary firing vector u , the next marking vector is given by

k’

M = Mk-l + A uk.

24



where T denotes transpose.
The state equation formulation can be used to express the graph marking
resulting from the application of sequences of elementary firing vectors.

This is done in the next two definitions.

Firing Count Vector. Let (ul,uz,....,ud) be a sequence of elementary firing
vectors taking a marked graph G from an initial marking M0 to a destination

marking M The firing count vector x 6 for this elementary firing vector

d’ d

sequence is defined by

q K ,» k=1,2...d

State Transitions. Consider a sequence of elementary firing vectors

(ul,uz,...,ud) taking marked graph G from marking MO to Md'
Then

M1 = Mo + A u1
M2 = M1 + A u,
. T
Mg = Mgy * AUy

and repeated substitution yields the state transition equation

T

Md = M0 + A xd

where X4 is the firing count vector.

25



This state equation description for the marking vector of a marked
graph is used in the next section to investigate properties of the computa-

tional marked graph.

3.3 Marked Graph Properties

Several graph theoretic properties of the computational marked graph
are developed in this section. The properties investigated include
reachability, liveness, and safeness. This area of investigation should be
viewed as a preliminary study only; additional properties are likely to be
developed as more experience is gained with the computational marked graph
model. It will also be important to attempt to extend these or similar
properties to the more general Petri net model of concurrent processes.

The first graph property to be considered is reachability. We begin
with a definition of this property.

Reachability. A marking Md is reachable from a marking M0 if there exists a
sequence of elementary firing vectors that transforms M0 to Md‘ Before
stating conditions for reachability, it is necessary to define a new matrix
quantity called a fundamental circuit matrix. For simplicity, it is assumed
that G is connected. That is, a path exists between every pair of vertices
in G.

Fundamental Circuits. Let T be a tree of G. Then the set of (m-n+l)

fundamental (or f) circuits, each uniquely formed by appending one cotree
edge to the tree, are called the fundamental circuits of G for tree T.

Fundamental Circuit Matrix. The fundamental circuit matrix of a graph G

for tree T is the (m-n+l) x (m) matrix Be= [bij] having rows corresponding

to places, and where

26



+1(-1) if place j is contained in f-circuit
i and the edge and the edge and circuit

directions agree (disagree)

0 if place j in not contained in f-circuit i.

\

The following property gives necessary and sufficient conditions for a mark-
ing My to be reachable from an initial marking My

Property 1 (Reachability). In a computational marked graph G, a marking %j

is reachable from an initial marking Mo if and only if B M

My = BfMo where Bf

is a fundamental circuit matrix for G.
Proof of Necessity. Suppose Md is reachable from Mo' Then from the state

transition equation, there exists a firing count vector xd and incidence

matrix A, such that

It is known from linear algebra that this equation has a solution for X4 if

and only if 4, is orthogonal to every solution of the transposed homogenous

M
equation Ay = 0 (y is mxl vector). By the orthogonality of A and Bf, it is

apparent that all possible solutions for y are contained in the space span-

ned by the columns of BfT.

Proof of Sufficiency. Suppose BfMd = BfMO. Then BfAM =0 and it follows by

Thus BfAMd = 0 and the property follows.

the above argument that there exists a vector X4 satisfying the equation

_ T
Md - M0 =AM = A Xq
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It is known that xd is an executable firing count vector if and only if G
contains no token free directed circuits [4]. Since a CMG contains no token
free directed circuits, X4 is executable so that Md is reachable from Mo'
This completes the proof.

The second graph property to be considered is liveness. Also presented
is a discussion of another closely related property called consistency.
Liveness. A marked graph G is live for marking M0 if, for all markings
reachable from Mo’ it is possible to fire any transition of G by progressing
through some firing sequence.

The following property gives necessary and sufficient conditions for a graph

to be live.

Property 2 (Liveness). A marked graph G is live for marking M if and only

if G has no token free directed circuits in marking M.
A proof of this property is given in [4] and is not repeated here. Since by
the construction rules of the CMG there are no token-free directed circuits,
it follows that the CMG is live.

A very important property which is closely related to liveness is
a property called consistency. It is shown that the CMG is consistent.
Consistency. A marked graph G is consistent if there exists a marking M0
and a firing sequence I from Mo back to Mo such that every transition occurs
at least once int.

Property 3 (Consistency). A connected CMG is consistent. In addition, each

transition of G occurs in L an equal number of times.

Proof. The incidence matrix for a marked graph G is an (n x m) matrix A.
If G is connected, then it is shown [9] that the rank of A is n-1, and thus
the null space of AT has dimension one. It is observed that each row of AT

has dimension one. It is observed that each row of AT has one (1), one (-1)
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., of AT

and all remaining terms of (0)s; and, in terms of the columns, CJ

£ Cj =0 j=1,2,...n T

It is readily shown that the homogeneous equations

I k,C.=03j=1,2,...,n
JJ
has only one non zero solution for the kj's. That is, k1=k2=--=kn=1-K,

where K is an arbitrary constant. The homogenous solution for the state

equation

where AM is zero, directly follows. That is, the firing vector, xd, has

elements all equal to an arbitrary constant, K, or Xq = [K,K,....K]T.

Because xd is a firing vector, K is restricted to non negative integers. By
further restricting K to be non zero and eliminating the null firing vector,

then ATx = 0 implies that there exists a non trivial firing sequence such
that Md = Mo’ and thus G is consistent. This completes the proof.

The consistency property is important because it shows that the CMG
operates periodically as long as inputs are available. During each period,
each transition of the CMG fires an equal number of times.

The third and final graph property considered in this section is

safeness. This property is first defined, and then it is shown that the CMG

is safe.
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Boundedness. A marked graph G is K-bounded for marking MO if, for all
markings reachable from Mo’ no place contains more than K tokens.
Safeness. A marked graph G is safe for marking M0 if it is 1-bounded for
M.

0
Property 4 (Safeness). A live marking Mo of a marked graph G is safe if

every place of G belongs to a directed circuit with token count one.

Proof. Let B, = [bij] be the directed circuit matrix for G. Then the rows

d
of G correspond to directed circuits of G, the columns correspond to

directed circuits of G, and the entries of Bf are given by

= +1 if place J 1is in directed circuit i

0 if place J 1is not in directed circuit i

Consider the state transition equation for G. Since Bd is orthogonal to the

incidence matrix A, it follows that for any marking M, reachable from Mo’

d

T

For any M, the pth component of vector BdM is equal to the number of tokens
contained in directed circuit p. It follows that the number of tokens
contained in a directed circuit is invariant. Therefore, if every place
belongs to a directed circuit with token count one for marking Mo’ it
follows that every place belongs to a directed circuit with token count one
for all markings reachable from Mo' It follows that no place of G contains
more than one token. This completes the proof.

In summary, it has been shown that the computational marked graph is

live, consistent, and safe. In addition, necessary and sufficient
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conditions for a marking My to be reachable from an initial marking My has
been given. It has also been established that when a CMG operates
periodically, each transition fires an equal number of times during a
period, and that the number of tokens contained in any directed circuit is

invariant under transition firings.

3.4 Analytical Bounds on Computational Performance

In this section, bounds on the computational performance of the
computational marked graph are developed. Included are formulations of an
upper bound on the completion time for the performance of an algorithm, and
a lower bound for the completion time of the performance of an algorithm.

An objective of future research is to develop tighter bounds on operation
performance as a function of the number of functional units available.

The time required to complete a computational task implemented accord-
ing to the rules of the computational marked graph has been shown to be a
function of the number of functional units available to carryout primitive
operations, the priority schedule with which functional units are assigned
to primitive operations, and the node marked graph strategy which is em-
ployed. At this time, it is not clearly understood how each of these oper-
ating parameters effects the computational time. However, as shown in Fig.
3.1 computational time is maximum when a single functional unit is used, and
a minimun computational time is realized when the number of functional units
is equal to the number of primitive operations, n. Properties of these

bounds, identified as Tmax and T are presented in this section.

min’
Future research will address determining N=Nmax which is the minimum Mnax
required for optimal performance.

Thax is an upper bound on the time required to complete a computation

(input to output). Tmax is the actual computational time when only a single
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— EXPERIMENTALLY EVALUATED

Figure 3.1 Performance Bounds.
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functional unit is available. The following are properties of the

operating bound.

1. Thax is an upper bound for all admissable operating conditions.

Task performance is always completed within this time.

2. Tmax is independent of node marked graph strategy. The same

maximum time is required in the three-node model and the one-node
model.

3. Thax is independent of priority schedule used to assign functional

units to primitive operations.

4, T =z T, k=1,2,..,n
max k

where Tk is the delay time associated with transition k.

Tmin is a lower bound on the time required to complete a computation.

The following are properties of this operating bound.

1. T is a lower bound for all admissable operating conditions.

min
Task performance is never completed in a shorter period of time.
2. Tmin is dependent on node marked graph operating strategy. It is

anticipated that nnin

(1-node model). However, this property
requires further research for more specific assessment.

3. Too, = Max {T(Ci)/Mo(Ci)}
where T(Ci) is the sum of transitions delays in directed circuit
Ci’ Mo(ci) is the nunber of tokens contained in directed circuit Ci’ and the
maximum is taken over all directed circuits.

In the next chapter, a prototype hardware implementation which operates
according to the CMG rules is presented. The prototype is used to validate
the CMG model, and as an experimental testbed to investigate computational

performance.
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CHAPTER FOUR

4.0 PROTOTYPE ARCHITECTURE

4.1 Introduction

A description of a prototype system which was used to implement the
ATAMM Model is discussed in this chapter. An overview of the system is
presented in Section 4.2. A description of the prototype graph manager is
’presented in Section 4.3. Discussion of the prototype functional unit and
global memory are presented in Sections 4.4 and 4.5, respectively. A
discussion of the relationship between design requirements and graph

validation is discussed in Section 4.6.

4.2 Prototype Overview

The prototype realization is based on computing environment assumptions
for the ATAMM model as described in Section 2.6. These assumptions are
reiterated below.

1. The computing structure contains N functional units (FUN). FUNs
are processors with local memory for program storage and temporary
input and output data containers. The stored programs include all
primitives to be executed.

2. The computing structure contains a global data memory accessible to
all FUNs. Although the GLM could be distributed, the GLM was
chosen to be centralized for implementation convenience. The input
data for each primitive operation are found in fixed data

containers in the global data memory.
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3. A primitive operation is assigned for execution on a functional
unit only when all inputs required by the operation are available
in data memory, and a FUN is available to carry out the primitive
operation.

4, Qutput created by the completion of a primitive operation may be
placed into global memory only after the output data containers
have been emptied. That is, outputs must be consumed as inputs to
successor primitive operations before allowing new data to fill the
output Tlocations.

A prototype architecture, based upon the above requirements, has been-
implemented to provide hardware validation of the ATAMM model rules. The
NMG that is used is the three node model. The prototype is not unigue and
is only one of several candidates which could have been used to perform the
concurrent operations. The resulting structure is a data-flow architecture
which is a natural consequence of meeting the requirements of the ATAMM
model.

The hardware configuration of the prototype is shown in Fig. 4.1. A
primary motivation for the particular design was the availability of hard-
ware. The hardware used to implement the system consists of S-100 crates,
each having an Intel 8088 CPU card, multiple serial 1/0 channels and 32K
memory. An IBM PC/XT is used to host the system and to download algorithm
graph descriptions to the system. A working prototype of the system has
been developed with three FUNs employing serial communications in lieu of

bus-level communications.

4.3 Prototype Graph Manager

The purpose of the graph manager (GRM) is to facilitate the assignment
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of FUNs to the various algorithm graph node operations in relation to the
advancement of tokens and transition firing in the CMG for the particular
algorithm being executed. The NMG characteristics for each node are main-
tained by the GRM. The updating of token placement is facilitated by status
information which is communicated to and/or from the active FUNs in their
respective stages of computing activity. Node firings are actuated by the
GRM when enabling information has been determined. Also, the GRM assigns
the FUN which will execute the particular process. It is noted that the GRM
manages the abstract properties of the graph through placement of tokens,
but does not handle data, per se. The GRM only respond to the data flow
conditions in the CMG and facilitates the firing of enabled transitions.

A simplified logical flow diagram for the prototype GRM operating
system is shown in Fig. 4.2. Each node NMG attribute is scanned in a
predetermined order which establishes a priority order among the nodes. For
example, consider the following path in the control flow:

If a node is not busy, B, the inputs tokens are checked for enablement,
IE. If a FUN is available, F, a FUN is assigned to the particular node
computation, and the node pointer is reset.

The control flow is interrupted when new status conditions are being

reported by the various FUNS. These status conditions are then recorded in
the various node NMG attributes and control flow is resumed on the updated

conditions.

4.4 Prototype Functional Unit

Each FUN must provide for communication handling as well as execution

of the primitive. The FUN must communicate status conditions to the GRM
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Figure 4.2 Simplified Graph Manager control states.

Reset node list pointer B - node busy

Scan node busy condition F - FUN available
Check enabled inputs IE - inputs enabled
Check available FUN's OE - outputs enabled
Assign FUN to node PD - process done

Check output empty
Send output labels
Increment node list pointer
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in order that the GRM may track CMG token flow. The FUN must communicate

with the GLM to facilitate the appropriate access of data containers. The
GRM identifies an idle FUN to which is passed labels indicating primitive
execution and data containers of input operands. Subsequent communication
with the GRM provides output data containers labels (when they become
available) and completion of the processing events. Thus the operating
system of the FUN must manage graph attribute details with the GRM and
actual data management with the GLM.

A control flow diagram of the prototype FUN operating system is shown
in Fig. 4.3. The control state of the FUN operating system is denoted by
"Z". The five control states are Wait (Z=1), Fetch Data (Z=2), Complete
Task (Z=3), Wait for Empty Output Container, (Z=4), and Output Data (Z=5).

4.5 Prototype Global Memory

The GLM operating system responds to directives by the FUN to either
fetch or write operands to the various data container labels in the global
memory. A simplified operating system for the prototype GLM is shown in
Figure 4.4. The operating system polls each FUN serial communication port
to determine the request for transfer of data. If a transfer is requested,
the type (input or output) and label is transfer. Then the appropriate data

is transferred.

4.6 Synthesis Considerations

The synthesis procedure for a particular realization of the ATAMM based
architecture must preserve the graph model requirements. Care must be exer-
cised not to change the behavior of the ATAMM characteristics as represented
by the NMG model. Thus communication/data exchange events built into the

architecture must be modeled in accordance with graph expansion rules for
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marked graphs [6], [7]. Allowable additions to the NMG include additions of
parallel edges, series edges and nodes, and Y-A transformations. The first
level synthesis expansion of the read node of an NMG is conducted to exem-
plify the synthesis and modeling verification. The read node of the NMG
requires that data be brought from the GLM to the assigned FUN. This trans-
action requires the data container labels (locations) and task assignment to
be sent from the GRM to the FUN. The FUN in turn requests the data from the
given locations in the GLM. When data has been placed in the FUN, the FUN
must indicate to the GRM that the data container has been emptied so that
the appropriate tokens can be placed in the graph description. The marked
graph expansion of the read node is shown in Fig. 4.5,

The above synthesis process leads to the communication dialogue se-
quence shown in Fig. 4.6. The expanded three node NMG with the communica-
tion/data transactions and related handshaking is shown in Fig. 4.7. It
should be noted that the topology of the graph reflects the physical layers
in the architecture where the GRM activities occur on the top layer, the FUN
activities occur on the middle layer, and the GLM activities occur on the
bottom layer. The communication and requisite handshaking form links to the

various layers, as should be expected.
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CHAPTER FIVE

5.0 EXPERIMENTAL EVALUATION

5.1 Introduction

Chapter five presents a preliminary evaluation of the prototype imple-
mentation described in Chapter Four. The evaluation is supported by the
development of a diagnostic procedure which interacts with the GRM. The
diagnostics are discussed in Section 5.2. An algorithm example is executed

to illustrate both the behavior of the system and diagnostic attributes.

5.2 System Diagnostics

The evaluation of the prototype is important in order to determine if
the system is behaving in accordance with the ATAMM model. Analysis is
difficult due to the concurrent processing and communication events taking
place. An appropriate diagnostic or analysis tool should make use of the
properties of the Graph Manager in that all system events are known as a
translation of the CMG token placement and node firings.

The Graph Manager has an internal real time clock which may be used to
time mark each event. The events to be recorded include:

1. the assignment of a FUN to a particular node,

2. the acquisition of input data by the node being processed,

3. the completion of the node processing,

4. the full or empty condition of the data container labels,

5. the writing of the output data,

The format of each of the entries of the report contains the next
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items of information:

1. Time at which the event took place.

2. Node at which the event took place.

3. Type of event (any of the above).

By recording the event time of every event of a particular graph execu-
tion, the system can be analyzed. The analysis yields information on how
the various FUNs dispatch their respective assignments, how they are con-
trolled by the data flow in the system, and how they compete for memory
access. In terms of performance, information can be derived to evaluate
data thruput parameters. For such an analysis, a program to translate this
information to a more readable form is being developed. This software is
called ANALYZER.

In order to demonstrate the general features of the ANALYZER program,
an example was run in the prototype system. This example is the partitioned
state equation algorithm that was previously described in Section 2.3.
Recall that this particular graph has eleven nodes, one input to the
algorithm and one output from the algorithm. The algorithm is presented
witn a sequence of ten inputs.

Several figures are presented to illustrate the behavior of the algo-
rithm and the diagnostic products of ANALYZER. Figure 5.1 is a display of
the activity of the algorithm graph nodes 1 to 7. In these plots, the x-
axes (time) are aligned in order to show the concurrent behavior of the
various nodes. The lowest graph is a display of Node #1. The display indi-
cates when that node becomes active and the duration of that state. For
this example, three FUNs are available to the system. Whenever a box is
filled with horizontal lines it indicates that the Functional Unit #1 iss

connected to that particular task or node. Vertical lines indicate
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Functional Unit #2, lines running from up-left to down-right indicate Func-
tional Unit #3, and so on. The display can be changed in order to show the
amount of time required to execute the individual sub-processes (i.e. data
input read time, process time, waiting for data output clear and data output
write time) for every node. This presentation format is shown in Fig. 5.2.
Horizontal lines indicate input read time, vertical lines indicate process
time, lines running from up-left to down-right indicate waiting for data
outputs to clear, and lines running from down-left to up-right indicate data
output write time. A feature that helps the user to more closely examine
the data presented by these displays is the capability to "zoom in" to a
marked section. The region enclosed by the two cursors in Fig. 5.2 is en-
larged in Fig. 5.3. Any other region can be defined in Fig. 5.3 and be
enlarged again and so on. In this case the differences between the sub-
processes marking are more evident. An additional display provides a time
activity history of each individual FUN. This ANALYZER FUN activity display
for the algorithm example is shown in Fig. 5.4. The bottom plot corre-
sponds to Functional Unit #1. It is also possible to apply the "zoom" fea-
ture to this screen. The interpretation of the patterns is the sane as

shown in Fig. 5.2.

Of particular importance is the gquantifying of the algorithm data
performance. The ANALYSER program provides displays to indicate The Input
to Qutput time (TBIO), Time between Inputs (TBI), and Time between OQutputs
(TBO). For the algorithm example having a sequence of ten inputs, Fig. 5.5

shows the tabulated values and a pictorial display. The solid line repre-
sents TBI, the dashed line represents TBIO, and the dotted line represents
TBO. The graphs are not presented on the same scale, but are presented to

provide qualitative information on the transient and steady state
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characteristics of these performance measures. An additional performance
statistic provided by ANALYZER is the mean value of every sub-process time
for a given node for the entire process. The boxes in the lower right
corner of Figs. 5.1, 5.2, 5.4 and 5.4 contain this information for several
nodes. The "concurrency' of a selected region in time is illustrated in
Fig. 5.6. This plotting shows the number of nodes that are working at the
same time versus time. The box in the lower right corner indicates the
percentage of the total time in the viewport that a given number of nodes or
FUNs are working at the same time. Time between any two points along the x-
axis can be measured using a double cursor arrangement. One cursor is fixed
and the other can be placed at any point in time. The difference between
both is continuously reported in the upper right corner of the screen as
shown in Fig. 5.2.

The SIMULATION program, as reported in [8], has been modified in order
to report the same type of information as the hardware system. In this
fashion, the execution of a specific graph can be compared to that of the
simulated behavior using this analyzer program. This way the simulation
program can be 'tuned' to the hardware for more accuracy. The ANALYZER
program will run in an IBM PC or true compatible with at least 256k of
memory, one disk drive and an Enhanced Graphics Adapeer with at least 64k of
memory and either an Enhanced Color Display or Monochrome Display. The
version used for the figures will run under these display restrictions using
an Enhanced Color Display (640X350 pixels) or Monochrome Display using just
four colors or tones. There is another version of the program that will run
using a Color Display and showing up to sixteen colors (640X200 pixels) or

with an Enhanced Color Display also with sixteen colors (640X350 pixels).
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APPENDIX A
Petri Net Background

A useful mathematical tool for modeling systems with interacting
concurrent components is the Petri net. Petri nets were first developed by
Carl Petri [1] in 1962, and later were identified as a useful system
analysis tool in the work of Holt and Commoner [2]. A comprehensive
introductory treatment of Petri nets is presented in Peterson [3].

A Petri net is a bipartite directed multigraph G described by a five
tuple, G=(P,T,a,B,MO). The set P is a set of |P|=m objects called places.
Places are used to represent the condition or status of a system. T is a
set of |T|=n objects, disjoint from elements of P, called transitions.
Transitions are used to represent events or actions in a system. The terms
a : P XT ->N (set of nonnegative integers) is called the input function.
The term “(pi’tj) is the nunber of arcs directed from place P into
transition tj’ Arcs directed from a place Pj to a transition tj indicates
that the status represented by place P; is a precondition for the event
represented by transition tj' The expression 8 : P X T -> N is called the
output function. B(pk,tj) is the nunber of arcs directed out of transition
tj to place pk.

Certain physical characteristics of the class of problems under
consideration lead to a simplified Petri net representation. In a decom-
posed algorithm, the performance of a primitive operation is either precon-
ditioned on the availability of a signal or it is not. That is, arcs asso-
ciate places (conditions) to transactions (events) in a binary way. There-
fore, a : P X T ->(0,1) and B : P X T ->(0,1). A Petri net having such

restricted inputs and output functions is called an ordinary Petri net.
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Arcs directed from a transition tj to a place p, indicates that the

action represented by transition tj to a place Py indicates that the action
represented by transition tj results in the status represented by place P
A condition may exist and is indicated by marking the corresponding place
with one or more tokens, MO:P -> N is called the initial marking vector.
The components of M0 identify the number of tokens marking each place.

The placement of tokens in a Petri net, and the status of the corre-
sponding system, evolve according to the following rules. A transition ti
is enabled if all input places contain at least as many tokens as input
arcs. That is, M(p) > a(p,ti) for all pe P. When an enabled transition ti
fires, tokens in each input place pj equal in number to the number of input
arcs “(pj’ti) are removed. Tokens in each output place Py equal in number
to the number of output arcs B(pk’ti) are deposited. Transition firings
continue as long as at least one transition is enabled. When there are no
enabled transitions, the execution of the net halts.

The concept of time is not explicitly included in the definition of
Petri nets. However, for performance evaluation and scheduling problems, it
is necessary and useful to define timed delays associated with the perfor-
mances of events. Such a Petri net is called a timed Petri net and is
defined by the six-tuple G = (P,T,a,8, MO,A). The first five parameters are
as previously defined. The function A : T -> R (nonnegative real numbers)
is called the firing time function. The components of A identify the time
delay associated with each transition. The placement of tokens in a timed
Petri net evolve according to the following rules. Tokens have two states
called reserved and non-reserved. A transition ti is enabled if all input
places contain at least as many non-reserved tokens as input arcs. As

before, an enabled transition may or may not fire. When an enabled
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transition ti fires, the firing process commences by changing the status of
tokens in each input place pj, equal in number to the nunber of input arcs

al(p ,t ), from non-reserved to reserved. Firing of transition ti terminates
J i
A(ti) time units after initiation by removing a(pj,t] reserved tokens from

each input place pj, and depositing B(pk’ti) non-reserved tokens at each
output place Pr-

Two very important subclasses of Petri nets are state machines and
marked graphs. A state machine is a Petri net in which each transition is
restricted to having exactly one input place and one output place. A marked
graph is the dual of a state machine. A marked graph is a Petri net in
which each place is restricted to having exactly one input transition and
one output transition. Thus, a state machine can represent conflicts by a
place with several output transitions, but cannot model the creation and
destruction of tokens required to model concurrency or the waiting which
characterizes synchronization. Marked graphs, on tne other hand, can not

model conflicts or data-dependent decisions, but can model concurrency.
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